postcopy-ram.c 46.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/*
 * Postcopy migration for RAM
 *
 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
 *
 * Authors:
 *  Dave Gilbert  <dgilbert@redhat.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

/*
 * Postcopy is a migration technique where the execution flips from the
 * source to the destination before all the data has been copied.
 */

#include "qemu/osdep.h"
#include "exec/target_page.h"
#include "migration.h"
#include "qemu-file.h"
#include "savevm.h"
#include "postcopy-ram.h"
#include "ram.h"
#include "qapi/error.h"
#include "qemu/notify.h"
#include "sysemu/sysemu.h"
#include "sysemu/balloon.h"
#include "qemu/error-report.h"
#include "trace.h"

/* Arbitrary limit on size of each discard command,
 * keeps them around ~200 bytes
 */
#define MAX_DISCARDS_PER_COMMAND 12

struct PostcopyDiscardState {
    const char *ramblock_name;
    uint16_t cur_entry;
    /*
     * Start and length of a discard range (bytes)
     */
    uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
    uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
    unsigned int nsentwords;
    unsigned int nsentcmds;
};

static NotifierWithReturnList postcopy_notifier_list;

void postcopy_infrastructure_init(void)
{
    notifier_with_return_list_init(&postcopy_notifier_list);
}

void postcopy_add_notifier(NotifierWithReturn *nn)
{
    notifier_with_return_list_add(&postcopy_notifier_list, nn);
}

void postcopy_remove_notifier(NotifierWithReturn *n)
{
    notifier_with_return_remove(n);
}

int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
{
    struct PostcopyNotifyData pnd;
    pnd.reason = reason;
    pnd.errp = errp;

    return notifier_with_return_list_notify(&postcopy_notifier_list,
                                            &pnd);
}

/* Postcopy needs to detect accesses to pages that haven't yet been copied
 * across, and efficiently map new pages in, the techniques for doing this
 * are target OS specific.
 */
#if defined(__linux__)

#include <poll.h>
#include <sys/ioctl.h>
#include <sys/syscall.h>
#include <asm/types.h> /* for __u64 */
#endif

#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
#include <sys/eventfd.h>
#include <linux/userfaultfd.h>

typedef struct PostcopyBlocktimeContext {
    /* time when page fault initiated per vCPU */
    uint32_t *page_fault_vcpu_time;
    /* page address per vCPU */
    uintptr_t *vcpu_addr;
    uint32_t total_blocktime;
    /* blocktime per vCPU */
    uint32_t *vcpu_blocktime;
    /* point in time when last page fault was initiated */
    uint32_t last_begin;
    /* number of vCPU are suspended */
    int smp_cpus_down;
    uint64_t start_time;

    /*
     * Handler for exit event, necessary for
     * releasing whole blocktime_ctx
     */
    Notifier exit_notifier;
} PostcopyBlocktimeContext;

static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
{
    g_free(ctx->page_fault_vcpu_time);
    g_free(ctx->vcpu_addr);
    g_free(ctx->vcpu_blocktime);
    g_free(ctx);
}

static void migration_exit_cb(Notifier *n, void *data)
{
    PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
                                                 exit_notifier);
    destroy_blocktime_context(ctx);
}

static struct PostcopyBlocktimeContext *blocktime_context_new(void)
{
    PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
    ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
    ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
    ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);

    ctx->exit_notifier.notify = migration_exit_cb;
    ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
    qemu_add_exit_notifier(&ctx->exit_notifier);
    return ctx;
}

static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
{
    uint32List *list = NULL, *entry = NULL;
    int i;

    for (i = smp_cpus - 1; i >= 0; i--) {
        entry = g_new0(uint32List, 1);
        entry->value = ctx->vcpu_blocktime[i];
        entry->next = list;
        list = entry;
    }

    return list;
}

/*
 * This function just populates MigrationInfo from postcopy's
 * blocktime context. It will not populate MigrationInfo,
 * unless postcopy-blocktime capability was set.
 *
 * @info: pointer to MigrationInfo to populate
 */
void fill_destination_postcopy_migration_info(MigrationInfo *info)
{
    MigrationIncomingState *mis = migration_incoming_get_current();
    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;

    if (!bc) {
        return;
    }

    info->has_postcopy_blocktime = true;
    info->postcopy_blocktime = bc->total_blocktime;
    info->has_postcopy_vcpu_blocktime = true;
    info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
}

static uint32_t get_postcopy_total_blocktime(void)
{
    MigrationIncomingState *mis = migration_incoming_get_current();
    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;

    if (!bc) {
        return 0;
    }

    return bc->total_blocktime;
}

/**
 * receive_ufd_features: check userfault fd features, to request only supported
 * features in the future.
 *
 * Returns: true on success
 *
 * __NR_userfaultfd - should be checked before
 *  @features: out parameter will contain uffdio_api.features provided by kernel
 *              in case of success
 */
static bool receive_ufd_features(uint64_t *features)
{
    struct uffdio_api api_struct = {0};
    int ufd;
    bool ret = true;

    /* if we are here __NR_userfaultfd should exists */
    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
    if (ufd == -1) {
        error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
                     strerror(errno));
        return false;
    }

    /* ask features */
    api_struct.api = UFFD_API;
    api_struct.features = 0;
    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
        error_report("%s: UFFDIO_API failed: %s", __func__,
                     strerror(errno));
        ret = false;
        goto release_ufd;
    }

    *features = api_struct.features;

release_ufd:
    close(ufd);
    return ret;
}

/**
 * request_ufd_features: this function should be called only once on a newly
 * opened ufd, subsequent calls will lead to error.
 *
 * Returns: true on succes
 *
 * @ufd: fd obtained from userfaultfd syscall
 * @features: bit mask see UFFD_API_FEATURES
 */
static bool request_ufd_features(int ufd, uint64_t features)
{
    struct uffdio_api api_struct = {0};
    uint64_t ioctl_mask;

    api_struct.api = UFFD_API;
    api_struct.features = features;
    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
        error_report("%s failed: UFFDIO_API failed: %s", __func__,
                     strerror(errno));
        return false;
    }

    ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
                 (__u64)1 << _UFFDIO_UNREGISTER;
    if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
        error_report("Missing userfault features: %" PRIx64,
                     (uint64_t)(~api_struct.ioctls & ioctl_mask));
        return false;
    }

    return true;
}

static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
{
    uint64_t asked_features = 0;
    static uint64_t supported_features;

    /*
     * it's not possible to
     * request UFFD_API twice per one fd
     * userfault fd features is persistent
     */
    if (!supported_features) {
        if (!receive_ufd_features(&supported_features)) {
            error_report("%s failed", __func__);
            return false;
        }
    }

#ifdef UFFD_FEATURE_THREAD_ID
    if (migrate_postcopy_blocktime() && mis &&
        UFFD_FEATURE_THREAD_ID & supported_features) {
        /* kernel supports that feature */
        /* don't create blocktime_context if it exists */
        if (!mis->blocktime_ctx) {
            mis->blocktime_ctx = blocktime_context_new();
        }

        asked_features |= UFFD_FEATURE_THREAD_ID;
    }
#endif

    /*
     * request features, even if asked_features is 0, due to
     * kernel expects UFFD_API before UFFDIO_REGISTER, per
     * userfault file descriptor
     */
    if (!request_ufd_features(ufd, asked_features)) {
        error_report("%s failed: features %" PRIu64, __func__,
                     asked_features);
        return false;
    }

    if (getpagesize() != ram_pagesize_summary()) {
        bool have_hp = false;
        /* We've got a huge page */
#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
        have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
#endif
        if (!have_hp) {
            error_report("Userfault on this host does not support huge pages");
            return false;
        }
    }
    return true;
}

/* Callback from postcopy_ram_supported_by_host block iterator.
 */
static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
                             ram_addr_t offset, ram_addr_t length, void *opaque)
{
    RAMBlock *rb = qemu_ram_block_by_name(block_name);
    size_t pagesize = qemu_ram_pagesize(rb);

    if (length % pagesize) {
        error_report("Postcopy requires RAM blocks to be a page size multiple,"
                     " block %s is 0x" RAM_ADDR_FMT " bytes with a "
                     "page size of 0x%zx", block_name, length, pagesize);
        return 1;
    }
    return 0;
}

/*
 * Note: This has the side effect of munlock'ing all of RAM, that's
 * normally fine since if the postcopy succeeds it gets turned back on at the
 * end.
 */
bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
{
    long pagesize = getpagesize();
    int ufd = -1;
    bool ret = false; /* Error unless we change it */
    void *testarea = NULL;
    struct uffdio_register reg_struct;
    struct uffdio_range range_struct;
    uint64_t feature_mask;
    Error *local_err = NULL;

    if (qemu_target_page_size() > pagesize) {
        error_report("Target page size bigger than host page size");
        goto out;
    }

    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
    if (ufd == -1) {
        error_report("%s: userfaultfd not available: %s", __func__,
                     strerror(errno));
        goto out;
    }

    /* Give devices a chance to object */
    if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
        error_report_err(local_err);
        goto out;
    }

    /* Version and features check */
    if (!ufd_check_and_apply(ufd, mis)) {
        goto out;
    }

    /* We don't support postcopy with shared RAM yet */
    if (qemu_ram_foreach_migratable_block(test_ramblock_postcopiable, NULL)) {
        goto out;
    }

    /*
     * userfault and mlock don't go together; we'll put it back later if
     * it was enabled.
     */
    if (munlockall()) {
        error_report("%s: munlockall: %s", __func__,  strerror(errno));
        return -1;
    }

    /*
     *  We need to check that the ops we need are supported on anon memory
     *  To do that we need to register a chunk and see the flags that
     *  are returned.
     */
    testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
                                    MAP_ANONYMOUS, -1, 0);
    if (testarea == MAP_FAILED) {
        error_report("%s: Failed to map test area: %s", __func__,
                     strerror(errno));
        goto out;
    }
    g_assert(((size_t)testarea & (pagesize-1)) == 0);

    reg_struct.range.start = (uintptr_t)testarea;
    reg_struct.range.len = pagesize;
    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;

    if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
        error_report("%s userfault register: %s", __func__, strerror(errno));
        goto out;
    }

    range_struct.start = (uintptr_t)testarea;
    range_struct.len = pagesize;
    if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
        error_report("%s userfault unregister: %s", __func__, strerror(errno));
        goto out;
    }

    feature_mask = (__u64)1 << _UFFDIO_WAKE |
                   (__u64)1 << _UFFDIO_COPY |
                   (__u64)1 << _UFFDIO_ZEROPAGE;
    if ((reg_struct.ioctls & feature_mask) != feature_mask) {
        error_report("Missing userfault map features: %" PRIx64,
                     (uint64_t)(~reg_struct.ioctls & feature_mask));
        goto out;
    }

    /* Success! */
    ret = true;
out:
    if (testarea) {
        munmap(testarea, pagesize);
    }
    if (ufd != -1) {
        close(ufd);
    }
    return ret;
}

/*
 * Setup an area of RAM so that it *can* be used for postcopy later; this
 * must be done right at the start prior to pre-copy.
 * opaque should be the MIS.
 */
static int init_range(const char *block_name, void *host_addr,
                      ram_addr_t offset, ram_addr_t length, void *opaque)
{
    trace_postcopy_init_range(block_name, host_addr, offset, length);

    /*
     * We need the whole of RAM to be truly empty for postcopy, so things
     * like ROMs and any data tables built during init must be zero'd
     * - we're going to get the copy from the source anyway.
     * (Precopy will just overwrite this data, so doesn't need the discard)
     */
    if (ram_discard_range(block_name, 0, length)) {
        return -1;
    }

    return 0;
}

/*
 * At the end of migration, undo the effects of init_range
 * opaque should be the MIS.
 */
static int cleanup_range(const char *block_name, void *host_addr,
                        ram_addr_t offset, ram_addr_t length, void *opaque)
{
    MigrationIncomingState *mis = opaque;
    struct uffdio_range range_struct;
    trace_postcopy_cleanup_range(block_name, host_addr, offset, length);

    /*
     * We turned off hugepage for the precopy stage with postcopy enabled
     * we can turn it back on now.
     */
    qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);

    /*
     * We can also turn off userfault now since we should have all the
     * pages.   It can be useful to leave it on to debug postcopy
     * if you're not sure it's always getting every page.
     */
    range_struct.start = (uintptr_t)host_addr;
    range_struct.len = length;

    if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
        error_report("%s: userfault unregister %s", __func__, strerror(errno));

        return -1;
    }

    return 0;
}

/*
 * Initialise postcopy-ram, setting the RAM to a state where we can go into
 * postcopy later; must be called prior to any precopy.
 * called from arch_init's similarly named ram_postcopy_incoming_init
 */
int postcopy_ram_incoming_init(MigrationIncomingState *mis)
{
    if (qemu_ram_foreach_migratable_block(init_range, NULL)) {
        return -1;
    }

    return 0;
}

/*
 * Manage a single vote to the QEMU balloon inhibitor for all postcopy usage,
 * last caller wins.
 */
static void postcopy_balloon_inhibit(bool state)
{
    static bool cur_state = false;

    if (state != cur_state) {
        qemu_balloon_inhibit(state);
        cur_state = state;
    }
}

/*
 * At the end of a migration where postcopy_ram_incoming_init was called.
 */
int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
{
    trace_postcopy_ram_incoming_cleanup_entry();

    if (mis->have_fault_thread) {
        Error *local_err = NULL;

        /* Let the fault thread quit */
        atomic_set(&mis->fault_thread_quit, 1);
        postcopy_fault_thread_notify(mis);
        trace_postcopy_ram_incoming_cleanup_join();
        qemu_thread_join(&mis->fault_thread);

        if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
            error_report_err(local_err);
            return -1;
        }

        if (qemu_ram_foreach_migratable_block(cleanup_range, mis)) {
            return -1;
        }

        trace_postcopy_ram_incoming_cleanup_closeuf();
        close(mis->userfault_fd);
        close(mis->userfault_event_fd);
        mis->have_fault_thread = false;
    }

    postcopy_balloon_inhibit(false);

    if (enable_mlock) {
        if (os_mlock() < 0) {
            error_report("mlock: %s", strerror(errno));
            /*
             * It doesn't feel right to fail at this point, we have a valid
             * VM state.
             */
        }
    }

    postcopy_state_set(POSTCOPY_INCOMING_END);

    if (mis->postcopy_tmp_page) {
        munmap(mis->postcopy_tmp_page, mis->largest_page_size);
        mis->postcopy_tmp_page = NULL;
    }
    if (mis->postcopy_tmp_zero_page) {
        munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
        mis->postcopy_tmp_zero_page = NULL;
    }
    trace_postcopy_ram_incoming_cleanup_blocktime(
            get_postcopy_total_blocktime());

    trace_postcopy_ram_incoming_cleanup_exit();
    return 0;
}

/*
 * Disable huge pages on an area
 */
static int nhp_range(const char *block_name, void *host_addr,
                    ram_addr_t offset, ram_addr_t length, void *opaque)
{
    trace_postcopy_nhp_range(block_name, host_addr, offset, length);

    /*
     * Before we do discards we need to ensure those discards really
     * do delete areas of the page, even if THP thinks a hugepage would
     * be a good idea, so force hugepages off.
     */
    qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);

    return 0;
}

/*
 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
 * however leaving it until after precopy means that most of the precopy
 * data is still THPd
 */
int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
{
    if (qemu_ram_foreach_migratable_block(nhp_range, mis)) {
        return -1;
    }

    postcopy_state_set(POSTCOPY_INCOMING_DISCARD);

    return 0;
}

/*
 * Mark the given area of RAM as requiring notification to unwritten areas
 * Used as a  callback on qemu_ram_foreach_migratable_block.
 *   host_addr: Base of area to mark
 *   offset: Offset in the whole ram arena
 *   length: Length of the section
 *   opaque: MigrationIncomingState pointer
 * Returns 0 on success
 */
static int ram_block_enable_notify(const char *block_name, void *host_addr,
                                   ram_addr_t offset, ram_addr_t length,
                                   void *opaque)
{
    MigrationIncomingState *mis = opaque;
    struct uffdio_register reg_struct;

    reg_struct.range.start = (uintptr_t)host_addr;
    reg_struct.range.len = length;
    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;

    /* Now tell our userfault_fd that it's responsible for this area */
    if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
        error_report("%s userfault register: %s", __func__, strerror(errno));
        return -1;
    }
    if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
        error_report("%s userfault: Region doesn't support COPY", __func__);
        return -1;
    }
    if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
        RAMBlock *rb = qemu_ram_block_by_name(block_name);
        qemu_ram_set_uf_zeroable(rb);
    }

    return 0;
}

int postcopy_wake_shared(struct PostCopyFD *pcfd,
                         uint64_t client_addr,
                         RAMBlock *rb)
{
    size_t pagesize = qemu_ram_pagesize(rb);
    struct uffdio_range range;
    int ret;
    trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
    range.start = client_addr & ~(pagesize - 1);
    range.len = pagesize;
    ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
    if (ret) {
        error_report("%s: Failed to wake: %zx in %s (%s)",
                     __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
                     strerror(errno));
    }
    return ret;
}

/*
 * Callback from shared fault handlers to ask for a page,
 * the page must be specified by a RAMBlock and an offset in that rb
 * Note: Only for use by shared fault handlers (in fault thread)
 */
int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
                                 uint64_t client_addr, uint64_t rb_offset)
{
    size_t pagesize = qemu_ram_pagesize(rb);
    uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
    MigrationIncomingState *mis = migration_incoming_get_current();

    trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
                                       rb_offset);
    if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
        trace_postcopy_request_shared_page_present(pcfd->idstr,
                                        qemu_ram_get_idstr(rb), rb_offset);
        return postcopy_wake_shared(pcfd, client_addr, rb);
    }
    if (rb != mis->last_rb) {
        mis->last_rb = rb;
        migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
                                  aligned_rbo, pagesize);
    } else {
        /* Save some space */
        migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
    }
    return 0;
}

static int get_mem_fault_cpu_index(uint32_t pid)
{
    CPUState *cpu_iter;

    CPU_FOREACH(cpu_iter) {
        if (cpu_iter->thread_id == pid) {
            trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
            return cpu_iter->cpu_index;
        }
    }
    trace_get_mem_fault_cpu_index(-1, pid);
    return -1;
}

static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
{
    int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
                                    dc->start_time;
    return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
}

/*
 * This function is being called when pagefault occurs. It
 * tracks down vCPU blocking time.
 *
 * @addr: faulted host virtual address
 * @ptid: faulted process thread id
 * @rb: ramblock appropriate to addr
 */
static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
                                          RAMBlock *rb)
{
    int cpu, already_received;
    MigrationIncomingState *mis = migration_incoming_get_current();
    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
    uint32_t low_time_offset;

    if (!dc || ptid == 0) {
        return;
    }
    cpu = get_mem_fault_cpu_index(ptid);
    if (cpu < 0) {
        return;
    }

    low_time_offset = get_low_time_offset(dc);
    if (dc->vcpu_addr[cpu] == 0) {
        atomic_inc(&dc->smp_cpus_down);
    }

    atomic_xchg(&dc->last_begin, low_time_offset);
    atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
    atomic_xchg(&dc->vcpu_addr[cpu], addr);

    /* check it here, not at the begining of the function,
     * due to, check could accur early than bitmap_set in
     * qemu_ufd_copy_ioctl */
    already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
    if (already_received) {
        atomic_xchg(&dc->vcpu_addr[cpu], 0);
        atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
        atomic_dec(&dc->smp_cpus_down);
    }
    trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
                                        cpu, already_received);
}

/*
 *  This function just provide calculated blocktime per cpu and trace it.
 *  Total blocktime is calculated in mark_postcopy_blocktime_end.
 *
 *
 * Assume we have 3 CPU
 *
 *      S1        E1           S1               E1
 * -----***********------------xxx***************------------------------> CPU1
 *
 *             S2                E2
 * ------------****************xxx---------------------------------------> CPU2
 *
 *                         S3            E3
 * ------------------------****xxx********-------------------------------> CPU3
 *
 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
 *            it's a part of total blocktime.
 * S1 - here is last_begin
 * Legend of the picture is following:
 *              * - means blocktime per vCPU
 *              x - means overlapped blocktime (total blocktime)
 *
 * @addr: host virtual address
 */
static void mark_postcopy_blocktime_end(uintptr_t addr)
{
    MigrationIncomingState *mis = migration_incoming_get_current();
    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
    int i, affected_cpu = 0;
    bool vcpu_total_blocktime = false;
    uint32_t read_vcpu_time, low_time_offset;

    if (!dc) {
        return;
    }

    low_time_offset = get_low_time_offset(dc);
    /* lookup cpu, to clear it,
     * that algorithm looks straighforward, but it's not
     * optimal, more optimal algorithm is keeping tree or hash
     * where key is address value is a list of  */
    for (i = 0; i < smp_cpus; i++) {
        uint32_t vcpu_blocktime = 0;

        read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
        if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
            read_vcpu_time == 0) {
            continue;
        }
        atomic_xchg(&dc->vcpu_addr[i], 0);
        vcpu_blocktime = low_time_offset - read_vcpu_time;
        affected_cpu += 1;
        /* we need to know is that mark_postcopy_end was due to
         * faulted page, another possible case it's prefetched
         * page and in that case we shouldn't be here */
        if (!vcpu_total_blocktime &&
            atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
            vcpu_total_blocktime = true;
        }
        /* continue cycle, due to one page could affect several vCPUs */
        dc->vcpu_blocktime[i] += vcpu_blocktime;
    }

    atomic_sub(&dc->smp_cpus_down, affected_cpu);
    if (vcpu_total_blocktime) {
        dc->total_blocktime += low_time_offset - atomic_fetch_add(
                &dc->last_begin, 0);
    }
    trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
                                      affected_cpu);
}

static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
{
    trace_postcopy_pause_fault_thread();

    qemu_sem_wait(&mis->postcopy_pause_sem_fault);

    trace_postcopy_pause_fault_thread_continued();

    return true;
}

/*
 * Handle faults detected by the USERFAULT markings
 */
static void *postcopy_ram_fault_thread(void *opaque)
{
    MigrationIncomingState *mis = opaque;
    struct uffd_msg msg;
    int ret;
    size_t index;
    RAMBlock *rb = NULL;

    trace_postcopy_ram_fault_thread_entry();
    rcu_register_thread();
    mis->last_rb = NULL; /* last RAMBlock we sent part of */
    qemu_sem_post(&mis->fault_thread_sem);

    struct pollfd *pfd;
    size_t pfd_len = 2 + mis->postcopy_remote_fds->len;

    pfd = g_new0(struct pollfd, pfd_len);

    pfd[0].fd = mis->userfault_fd;
    pfd[0].events = POLLIN;
    pfd[1].fd = mis->userfault_event_fd;
    pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
    trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
    for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
        struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
                                                 struct PostCopyFD, index);
        pfd[2 + index].fd = pcfd->fd;
        pfd[2 + index].events = POLLIN;
        trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
                                                  pcfd->fd);
    }

    while (true) {
        ram_addr_t rb_offset;
        int poll_result;

        /*
         * We're mainly waiting for the kernel to give us a faulting HVA,
         * however we can be told to quit via userfault_quit_fd which is
         * an eventfd
         */

        poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
        if (poll_result == -1) {
            error_report("%s: userfault poll: %s", __func__, strerror(errno));
            break;
        }

        if (!mis->to_src_file) {
            /*
             * Possibly someone tells us that the return path is
             * broken already using the event. We should hold until
             * the channel is rebuilt.
             */
            if (postcopy_pause_fault_thread(mis)) {
                mis->last_rb = NULL;
                /* Continue to read the userfaultfd */
            } else {
                error_report("%s: paused but don't allow to continue",
                             __func__);
                break;
            }
        }

        if (pfd[1].revents) {
            uint64_t tmp64 = 0;

            /* Consume the signal */
            if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
                /* Nothing obviously nicer than posting this error. */
                error_report("%s: read() failed", __func__);
            }

            if (atomic_read(&mis->fault_thread_quit)) {
                trace_postcopy_ram_fault_thread_quit();
                break;
            }
        }

        if (pfd[0].revents) {
            poll_result--;
            ret = read(mis->userfault_fd, &msg, sizeof(msg));
            if (ret != sizeof(msg)) {
                if (errno == EAGAIN) {
                    /*
                     * if a wake up happens on the other thread just after
                     * the poll, there is nothing to read.
                     */
                    continue;
                }
                if (ret < 0) {
                    error_report("%s: Failed to read full userfault "
                                 "message: %s",
                                 __func__, strerror(errno));
                    break;
                } else {
                    error_report("%s: Read %d bytes from userfaultfd "
                                 "expected %zd",
                                 __func__, ret, sizeof(msg));
                    break; /* Lost alignment, don't know what we'd read next */
                }
            }
            if (msg.event != UFFD_EVENT_PAGEFAULT) {
                error_report("%s: Read unexpected event %ud from userfaultfd",
                             __func__, msg.event);
                continue; /* It's not a page fault, shouldn't happen */
            }

            rb = qemu_ram_block_from_host(
                     (void *)(uintptr_t)msg.arg.pagefault.address,
                     true, &rb_offset);
            if (!rb) {
                error_report("postcopy_ram_fault_thread: Fault outside guest: %"
                             PRIx64, (uint64_t)msg.arg.pagefault.address);
                break;
            }

            rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
            trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
                                                qemu_ram_get_idstr(rb),
                                                rb_offset,
                                                msg.arg.pagefault.feat.ptid);
            mark_postcopy_blocktime_begin(
                    (uintptr_t)(msg.arg.pagefault.address),
                                msg.arg.pagefault.feat.ptid, rb);

retry:
            /*
             * Send the request to the source - we want to request one
             * of our host page sizes (which is >= TPS)
             */
            if (rb != mis->last_rb) {
                mis->last_rb = rb;
                ret = migrate_send_rp_req_pages(mis,
                                                qemu_ram_get_idstr(rb),
                                                rb_offset,
                                                qemu_ram_pagesize(rb));
            } else {
                /* Save some space */
                ret = migrate_send_rp_req_pages(mis,
                                                NULL,
                                                rb_offset,
                                                qemu_ram_pagesize(rb));
            }

            if (ret) {
                /* May be network failure, try to wait for recovery */
                if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
                    /* We got reconnected somehow, try to continue */
                    mis->last_rb = NULL;
                    goto retry;
                } else {
                    /* This is a unavoidable fault */
                    error_report("%s: migrate_send_rp_req_pages() get %d",
                                 __func__, ret);
                    break;
                }
            }
        }

        /* Now handle any requests from external processes on shared memory */
        /* TODO: May need to handle devices deregistering during postcopy */
        for (index = 2; index < pfd_len && poll_result; index++) {
            if (pfd[index].revents) {
                struct PostCopyFD *pcfd =
                    &g_array_index(mis->postcopy_remote_fds,
                                   struct PostCopyFD, index - 2);

                poll_result--;
                if (pfd[index].revents & POLLERR) {
                    error_report("%s: POLLERR on poll %zd fd=%d",
                                 __func__, index, pcfd->fd);
                    pfd[index].events = 0;
                    continue;
                }

                ret = read(pcfd->fd, &msg, sizeof(msg));
                if (ret != sizeof(msg)) {
                    if (errno == EAGAIN) {
                        /*
                         * if a wake up happens on the other thread just after
                         * the poll, there is nothing to read.
                         */
                        continue;
                    }
                    if (ret < 0) {
                        error_report("%s: Failed to read full userfault "
                                     "message: %s (shared) revents=%d",
                                     __func__, strerror(errno),
                                     pfd[index].revents);
                        /*TODO: Could just disable this sharer */
                        break;
                    } else {
                        error_report("%s: Read %d bytes from userfaultfd "
                                     "expected %zd (shared)",
                                     __func__, ret, sizeof(msg));
                        /*TODO: Could just disable this sharer */
                        break; /*Lost alignment,don't know what we'd read next*/
                    }
                }
                if (msg.event != UFFD_EVENT_PAGEFAULT) {
                    error_report("%s: Read unexpected event %ud "
                                 "from userfaultfd (shared)",
                                 __func__, msg.event);
                    continue; /* It's not a page fault, shouldn't happen */
                }
                /* Call the device handler registered with us */
                ret = pcfd->handler(pcfd, &msg);
                if (ret) {
                    error_report("%s: Failed to resolve shared fault on %zd/%s",
                                 __func__, index, pcfd->idstr);
                    /* TODO: Fail? Disable this sharer? */
                }
            }
        }
    }
    rcu_unregister_thread();
    trace_postcopy_ram_fault_thread_exit();
    g_free(pfd);
    return NULL;
}

int postcopy_ram_enable_notify(MigrationIncomingState *mis)
{
    /* Open the fd for the kernel to give us userfaults */
    mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
    if (mis->userfault_fd == -1) {
        error_report("%s: Failed to open userfault fd: %s", __func__,
                     strerror(errno));
        return -1;
    }

    /*
     * Although the host check already tested the API, we need to
     * do the check again as an ABI handshake on the new fd.
     */
    if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
        return -1;
    }

    /* Now an eventfd we use to tell the fault-thread to quit */
    mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
    if (mis->userfault_event_fd == -1) {
        error_report("%s: Opening userfault_event_fd: %s", __func__,
                     strerror(errno));
        close(mis->userfault_fd);
        return -1;
    }

    qemu_sem_init(&mis->fault_thread_sem, 0);
    qemu_thread_create(&mis->fault_thread, "postcopy/fault",
                       postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
    qemu_sem_wait(&mis->fault_thread_sem);
    qemu_sem_destroy(&mis->fault_thread_sem);
    mis->have_fault_thread = true;

    /* Mark so that we get notified of accesses to unwritten areas */
    if (qemu_ram_foreach_migratable_block(ram_block_enable_notify, mis)) {
        return -1;
    }

    /*
     * Ballooning can mark pages as absent while we're postcopying
     * that would cause false userfaults.
     */
    postcopy_balloon_inhibit(true);

    trace_postcopy_ram_enable_notify();

    return 0;
}

static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
                               void *from_addr, uint64_t pagesize, RAMBlock *rb)
{
    int ret;
    if (from_addr) {
        struct uffdio_copy copy_struct;
        copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
        copy_struct.src = (uint64_t)(uintptr_t)from_addr;
        copy_struct.len = pagesize;
        copy_struct.mode = 0;
        ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
    } else {
        struct uffdio_zeropage zero_struct;
        zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
        zero_struct.range.len = pagesize;
        zero_struct.mode = 0;
        ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
    }
    if (!ret) {
        ramblock_recv_bitmap_set_range(rb, host_addr,
                                       pagesize / qemu_target_page_size());
        mark_postcopy_blocktime_end((uintptr_t)host_addr);

    }
    return ret;
}

int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
{
    int i;
    MigrationIncomingState *mis = migration_incoming_get_current();
    GArray *pcrfds = mis->postcopy_remote_fds;

    for (i = 0; i < pcrfds->len; i++) {
        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
        int ret = cur->waker(cur, rb, offset);
        if (ret) {
            return ret;
        }
    }
    return 0;
}

/*
 * Place a host page (from) at (host) atomically
 * returns 0 on success
 */
int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
                        RAMBlock *rb)
{
    size_t pagesize = qemu_ram_pagesize(rb);

    /* copy also acks to the kernel waking the stalled thread up
     * TODO: We can inhibit that ack and only do it if it was requested
     * which would be slightly cheaper, but we'd have to be careful
     * of the order of updating our page state.
     */
    if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
        int e = errno;
        error_report("%s: %s copy host: %p from: %p (size: %zd)",
                     __func__, strerror(e), host, from, pagesize);

        return -e;
    }

    trace_postcopy_place_page(host);
    return postcopy_notify_shared_wake(rb,
                                       qemu_ram_block_host_offset(rb, host));
}

/*
 * Place a zero page at (host) atomically
 * returns 0 on success
 */
int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
                             RAMBlock *rb)
{
    size_t pagesize = qemu_ram_pagesize(rb);
    trace_postcopy_place_page_zero(host);

    /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
     * but it's not available for everything (e.g. hugetlbpages)
     */
    if (qemu_ram_is_uf_zeroable(rb)) {
        if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
            int e = errno;
            error_report("%s: %s zero host: %p",
                         __func__, strerror(e), host);

            return -e;
        }
        return postcopy_notify_shared_wake(rb,
                                           qemu_ram_block_host_offset(rb,
                                                                      host));
    } else {
        /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
        if (!mis->postcopy_tmp_zero_page) {
            mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
                                               PROT_READ | PROT_WRITE,
                                               MAP_PRIVATE | MAP_ANONYMOUS,
                                               -1, 0);
            if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
                int e = errno;
                mis->postcopy_tmp_zero_page = NULL;
                error_report("%s: %s mapping large zero page",
                             __func__, strerror(e));
                return -e;
            }
            memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
        }
        return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
                                   rb);
    }
}

/*
 * Returns a target page of memory that can be mapped at a later point in time
 * using postcopy_place_page
 * The same address is used repeatedly, postcopy_place_page just takes the
 * backing page away.
 * Returns: Pointer to allocated page
 *
 */
void *postcopy_get_tmp_page(MigrationIncomingState *mis)
{
    if (!mis->postcopy_tmp_page) {
        mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
                             PROT_READ | PROT_WRITE, MAP_PRIVATE |
                             MAP_ANONYMOUS, -1, 0);
        if (mis->postcopy_tmp_page == MAP_FAILED) {
            mis->postcopy_tmp_page = NULL;
            error_report("%s: %s", __func__, strerror(errno));
            return NULL;
        }
    }

    return mis->postcopy_tmp_page;
}

#else
/* No target OS support, stubs just fail */
void fill_destination_postcopy_migration_info(MigrationInfo *info)
{
}

bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
{
    error_report("%s: No OS support", __func__);
    return false;
}

int postcopy_ram_incoming_init(MigrationIncomingState *mis)
{
    error_report("postcopy_ram_incoming_init: No OS support");
    return -1;
}

int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
{
    assert(0);
    return -1;
}

int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
{
    assert(0);
    return -1;
}

int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
                                 uint64_t client_addr, uint64_t rb_offset)
{
    assert(0);
    return -1;
}

int postcopy_ram_enable_notify(MigrationIncomingState *mis)
{
    assert(0);
    return -1;
}

int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
                        RAMBlock *rb)
{
    assert(0);
    return -1;
}

int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
                        RAMBlock *rb)
{
    assert(0);
    return -1;
}

void *postcopy_get_tmp_page(MigrationIncomingState *mis)
{
    assert(0);
    return NULL;
}

int postcopy_wake_shared(struct PostCopyFD *pcfd,
                         uint64_t client_addr,
                         RAMBlock *rb)
{
    assert(0);
    return -1;
}
#endif

/* ------------------------------------------------------------------------- */

void postcopy_fault_thread_notify(MigrationIncomingState *mis)
{
    uint64_t tmp64 = 1;

    /*
     * Wakeup the fault_thread.  It's an eventfd that should currently
     * be at 0, we're going to increment it to 1
     */
    if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
        /* Not much we can do here, but may as well report it */
        error_report("%s: incrementing failed: %s", __func__,
                     strerror(errno));
    }
}

/**
 * postcopy_discard_send_init: Called at the start of each RAMBlock before
 *   asking to discard individual ranges.
 *
 * @ms: The current migration state.
 * @offset: the bitmap offset of the named RAMBlock in the migration
 *   bitmap.
 * @name: RAMBlock that discards will operate on.
 *
 * returns: a new PDS.
 */
PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
                                                 const char *name)
{
    PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));

    if (res) {
        res->ramblock_name = name;
    }

    return res;
}

/**
 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
 *   discard. May send a discard message, may just leave it queued to
 *   be sent later.
 *
 * @ms: Current migration state.
 * @pds: Structure initialised by postcopy_discard_send_init().
 * @start,@length: a range of pages in the migration bitmap in the
 *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
 */
void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
                                unsigned long start, unsigned long length)
{
    size_t tp_size = qemu_target_page_size();
    /* Convert to byte offsets within the RAM block */
    pds->start_list[pds->cur_entry] = start  * tp_size;
    pds->length_list[pds->cur_entry] = length * tp_size;
    trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
    pds->cur_entry++;
    pds->nsentwords++;

    if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
        /* Full set, ship it! */
        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
                                              pds->ramblock_name,
                                              pds->cur_entry,
                                              pds->start_list,
                                              pds->length_list);
        pds->nsentcmds++;
        pds->cur_entry = 0;
    }
}

/**
 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
 * bitmap code. Sends any outstanding discard messages, frees the PDS
 *
 * @ms: Current migration state.
 * @pds: Structure initialised by postcopy_discard_send_init().
 */
void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
{
    /* Anything unsent? */
    if (pds->cur_entry) {
        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
                                              pds->ramblock_name,
                                              pds->cur_entry,
                                              pds->start_list,
                                              pds->length_list);
        pds->nsentcmds++;
    }

    trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
                                       pds->nsentcmds);

    g_free(pds);
}

/*
 * Current state of incoming postcopy; note this is not part of
 * MigrationIncomingState since it's state is used during cleanup
 * at the end as MIS is being freed.
 */
static PostcopyState incoming_postcopy_state;

PostcopyState  postcopy_state_get(void)
{
    return atomic_mb_read(&incoming_postcopy_state);
}

/* Set the state and return the old state */
PostcopyState postcopy_state_set(PostcopyState new_state)
{
    return atomic_xchg(&incoming_postcopy_state, new_state);
}

/* Register a handler for external shared memory postcopy
 * called on the destination.
 */
void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
{
    MigrationIncomingState *mis = migration_incoming_get_current();

    mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
                                                  *pcfd);
}

/* Unregister a handler for external shared memory postcopy
 */
void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
{
    guint i;
    MigrationIncomingState *mis = migration_incoming_get_current();
    GArray *pcrfds = mis->postcopy_remote_fds;

    for (i = 0; i < pcrfds->len; i++) {
        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
        if (cur->fd == pcfd->fd) {
            mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
            return;
        }
    }
}